毕业设计(论文)任务书毕业设计(论文)任务书 学学 院:院: 题题 目:目: 某堆浸铀矿山某堆浸铀矿山 100tU/a100tU/a 密实移动床离子交换密实移动床离子交换 工艺设计工艺设计 起止时间: 学 生 姓 名: 专 业 班 级: 指 导 教 师: 教研室主 任: 院 长: 论文 (设计) 内容及要求: 一一、毕业设计原始依据毕业设计原始依据 南方某铀矿堆浸浸出液平均浓度为200 mgL-1,树脂饱和容量为30mgU/mLR, 每年生产时间按300天计,水冶总回收率92%。设计内容从浸出液开始,到“111” 产品。 以上述数据为依据,设计一个年产100t金属U的密实移动床离子交换回收铀的 水冶厂。 二二、毕业设计主要内容毕业设计主要内容 (1)铀堆浸及离子交换工艺介绍; (2)密实移动床离子交换工艺流程设计及参数选择; (3)密实移动床吸附塔、淋洗塔、转型塔的计算与设计; (4)离子交换管路系统计算与设计; (5)沉淀工艺及设备的计算与设计; (6)水冶厂平面布置设计; (7)绘制从浸出液到“111”产品的密实移动床离子交换水冶厂,包括工艺 流程图、平面布置示意图、设备形象系统图、工艺管线图和数质量流程图。图纸 要求采用 CAD 绘制,A1、A2、A3 图幅。 三三、毕业设计(论文)基本要求毕业设计(论文)基本要求 综合运用所学的基础理论与专业知识(包括以前的生产实习、毕业实习的实 践知识) ,在老师指导下独立地、较系统地完成“某堆浸铀矿某堆浸铀矿 100tU/a100tU/a 密实移动床密实移动床 离子交换工艺设计离子交换工艺设计” ,巩固所学的各科知识,提高综合运用所学理论知识和专业技 能的能力;学会分析解决离子交换回收铀过程中的实际问题,增强独立思考的能 力,为以后走上工作岗位奠定良好的基础。 (1 1)按照毕业设计任务书的要求,在指导老师的指导和帮助下,结合实际情 况,按期、认真完成题为“某堆浸铀矿某堆浸铀矿 100tU/a100tU/a 密实移动床离子交换工艺设计密实移动床离子交换工艺设计” 的内容,按时提交毕业设计。 (2)翻译本专业英文文献一篇(3000-5000 汉字) 。 四四、毕业设计(论文)进度安排毕业设计(论文)进度安排 (1) ,广泛查阅相关文献资料并进行分析、整理 ,编写开 题报告; (2) ,根据所掌握资料,结合实际情况,认真研究、分析, 拟定设计方案; (3) ,密实移动床吸附塔、淋洗塔、转型塔、沉淀槽、压 滤机及工艺管线等水冶厂各部分的计算、设计及选择; (4) ,各种图纸的设计绘制; (5) ,编写设计说明书; (6) ,检查修改,准备答辩(含预答辩) 。 五五、主要参考文献主要参考文献 (1) 铀、金、铜堆浸理论与实践 ,1997 (2) 溶浸采铀(矿) ,1998 (3) 溶浸采矿热力学和动力学 ,2003 (4) 湿法冶金 ,1998 (5) 铀矿石的化学分析 ,2006 (6) 铀矿石加工实验室试验手册 ,1992 (7) 铀提取工艺学 ,2010.1 (8) 选矿厂设计 ,2006.1 (9) 化工工艺设计手册 ,2007 (10)图书馆、期刊网检索相关文献资料。 指导老师: (签 名) 年 月 日 Biochemical Engineering Journal 12 (2002) 4348 Properties of the biofi lm of Thiobacillus ferrooxidans formed in rotating biological contactor L. Nikolova, D. Karamanevb, V. Mamatarkovaa, D. Mehocheva, D. Dimitrova a Faculty of Biology, Sofi a University, 8 Dr. Tsankov Boulevard, 1421 Sofi a, Bulgaria b Department of Chemical and Biochemical Engineering, University of Western Ontario London, Ontario, Canada, N6G 5B9 Received 3 August 2001; accepted after revision 27 February 2002 Abstract The physico-chemical properties of the Thiobacillus ferrooxidans biofi lm formed on the surface of rotating disks in a rotating biological contactor(RBC)werestudiedundersteady-stateconditions.Themainindependentvariablewastheinputsubstrate(ferrousiron)concentra- tioninthebioreactor.Ithasbeenshownthatthebiofi lmthicknesswasmaximal,thebiofi lmdensitywasminimalandthespecifi csurfacearea ofporesinthebiofi lmwasmaximalwhentheinputferrousironconcentrationwasbetween1and2.1g/l.Thebiofi lmvolumeremainednearly thesamewheninputsubstrateconcentrationswerebetween0.49and14.21g/l,correspondingtooxidationratesbetween0.35and8.6g/m2h. 2002 Elsevier Science B.V. All rights reserved. Keywords: Biofi lms; Bioreactors; Kinetic parameters; Thiobacillus ferrooxidans; Iron oxidation 1. Introduction The ability of bacterium Thiobacillus ferrooxidans (recently renamed to Acidothiobacillus ferrooxidans) to form biofi lms on solids supports has been considered for the development of high performance bioreactors for the needs of metal leaching technologies, purifi cation of gases containing sulfur compounds and acid mine drainage treat- ment 1. The biofi lm itself has been subject of numerous investigations including its chemical and biological compo- nents 2,3 and interactions with solid supports 4. How- ever, there is a lack of data about such physico-chemical properties of the biofi lm as density, water content and porosity. These data could be of interest to bioreactor de- sign as well as for the mathematical model development 5. The main aim of this work is to reveal the main physico-chemical properties of the biofi lm of T. ferroox- idans as a function of the rate of ferrous iron oxidation, substrate (Fe2+) and product (Fe3+) concentrations. Corresponding author. Tel.: +1-519-661-2111; fax: +1-519-661-3498. E-mail address: dkaramaneveng.uwo.ca (D. Karamanev). 2. Materials and methods 2.1. Bioreactors A laboratory rotating biological contactor (RBC) was used. It has been described in detail previously 6. It con- sisted of six identical sections of 2.3l working volume each, mounted on a common shaft. This ensured an equal rota- tional speed. Each section contained seven plastic (PVC) disks, 0.2m in diameter, mounted on the rotating horizontal stainless steel shaft. All the experiments have been carried out at a rotational speed of 26rpm. This velocity has been found to be optimal from the point of view of iron oxidation effi ciency 7. Each section was operated independently as an individual bioreactor (#16 in Table 1). The input fer- rous iron concentrations (Table 1) were chosen to cover the range of practical uses of RBCs. After inoculation, the initial biofi lm formation was carried out in repeated batch regime during the fi rst 20 days. The initial substrate concentrations are shown in Table 1. Dur- ing the second step, the bioreactors were switched to con- tinuous operation with a liquid residence time of 400min (corresponding to a dilution rate of 0.15h1). The input fer- rous iron concentrations were the same as the initial ones during the batch operation. The liquid temperature was kept 1369-703X/02/$ see front matter